4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
Heterocyclics as Inducers of Apoptosis
来自 : link.springer.com/chapter/10.1 发布时间:2021-03-25
Abstract

A discussion on apoptosis and a variety of heterocyclic compounds that induce apoptosis is presented. A number of heterocyclic compounds containing nitrogen, oxygen or both exhibit significant anticancer properties. Brief discussions on the mode of action of various anticancer heterocyclic compounds in inducing apoptosis are also presented.

KeywordsEpidermal Growth Factor Receptor Human Cancer Cell Line Tubulin Polymerization Quinoline Derivative A549 Lung Cancer Cell  These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves. This is a preview of subscription content, log in to check access.ReferencesAlan PK, Irina NG, Franck G, Andrei VO, Kim KH, Toru K, Songpo G, Denise H, Doris NL, Sylvie YB, Daniel DB (2009) From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem 52:1853–1863. doi: 10.1021/jm801317h CrossRefGoogle ScholarAlessandra B, Maria M, Silvia G, Angela R, Manlio T, Luisa D (2008) Multidrug resistance reverting activity and antitumor profile of new phenothiazine derivatives. Bioorg Med Chem 16:6474–6482. doi: 10.1016/j.bmc.2008.05.040 CrossRefGoogle ScholarAlkahtani HM, Abbas AY, Wang S (2012) Synthesis and biological evaluation of benzo[d]imidazole derivatives as potential anti-cancer agents. Bioorg Med Chem Lett 22:1317–1321. doi: 10.1016/j.bmcl.2011.12.088 PubMedCrossRefGoogle ScholarAntonello M, Dante R, Vincenzo C, Domenico T, Giorgia B, Angela N, Lucia A (2011) Simplification of the tetracyclic SIRT1-selective inhibitor MC2141: coumarin- and pyrimidine-based SIRT1/2 inhibitors with different selectivity profile. Bioorg Med Chem 19:3659–3668. doi: 10.1016/j.bmc.2011.01.025 CrossRefGoogle ScholarAshkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308PubMedCrossRefGoogle ScholarBan HS, Tanaka Y, Nabeyama W, Hatori M, Nakamura H (2010) Enhancement of EGFR tyrosine kinase inhibition by C–C multiple bonds-containing anilinoquinazolines. Bioorg Med Chem 18:870–879. doi: 10.1016/j.bmc.2009.11.035 PubMedCrossRefGoogle ScholarBao-Xiang Z, Pei-Fu J, Wei-Wei W, Qiu-Xia H, Mao-Sheng W, Dong-Soo S, Jun-Ying M (2006) Design, synthesis, and preliminary biological evaluation of 2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine derivatives. Bioorg Med Chem Lett 16:2862–2867. doi: 10.1016/j.bmcl.2006.03.013 CrossRefGoogle ScholarBoatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731PubMedCrossRefGoogle ScholarCai SX, William K, Jared K, Han-Zhong Z, Shailaja K, Ben T, John D (2009) Discovery of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers. 2. Identification of more aqueous soluble analogs as potential anticancer agents. Bioorg Med Chem Lett 19:4410–4415. doi: 10.1016/j.bmcl.2009.05.052 PubMedCrossRefGoogle ScholarCao J-G, Fu X-H, Wang L, Zhao H, Xiang H-L (2008) Synthesis of genistein derivatives and determination of their protective effects against vascular endothelial cell damages caused by hydrogen peroxide. Bioorg Med Chem Lett 18:513–517. doi: 10.1016/j.bmcl.2007.11.097 PubMedCrossRefGoogle ScholarCarlos D, Maria ER, Albertina M, Ramiro V, Natalia G, Graciela F, Lidia P, de Celis ER, Carina S (2008) Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg Med Chem 16:2665–2675. doi: 10.1016/j.bmc.2007.11.038 CrossRefGoogle ScholarCarmen A, Irene O, Juan FG, Elena DLC, Cristina M-G, Rosario P (2008) Pyrazino[1,2-b]isoquinolines: synthesis and study of their cytostatic and cytotoxic properties. Bioorg Med Chem 16:9065–9078. doi: 10.1016/j.bmc.2008.07.083 CrossRefGoogle ScholarChang FS, Chen W, Wang C, Tzeng CC, Chen YL (2010) Synthesis and antiproliferative evaluations of certain 2-phenylvinylquinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg Med Chem 18:124–133. doi: 10.1016/j.bmc.2009.11.012 PubMedCrossRefGoogle ScholarChen C-S, Shaw Y-J, Yang Y-T, Jason BG, Natasha K (2004) Pharmacological exploitation of the r1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. J Med Chem 47:4453–4462. doi: 10.1021/jm049752k PubMedCrossRefGoogle ScholarChen Q, Bryant VC, Lopez H, Kelly DL, Luo X, Natarajan A (2011) 2,3-Substituted quinoxalin-6-amine analogs as antiproliferatives: a structure–activity relationship study. Bioorg Med Chem Lett 21:1929–1932. doi: 10.1016/j.bmcl.2011.02.055 PubMedCrossRefGoogle ScholarChicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272:32401–32410PubMedCrossRefGoogle ScholarChinnaiyan AM (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1:5–15PubMedCrossRefGoogle ScholarChou L, Huang L, Yang J, Lee F, Teng C, Kuo S (2007) Synthesis of furopyrazole analogs of 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) as novel anti-leukemia agents. Bioorg Med Chem 15:1732–1740. doi: 10.1016/j.bmc.2006.12.001 PubMedCrossRefGoogle ScholarCláudia S-S, Karina KLM, de Oliveira KN, Lorena S-B, Marley AL, Ricardo JN (2011) Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. Bioorg Med Chem 19:6285–6291. doi: 10.1016/j.bmc.2011.09.008 CrossRefGoogle ScholarClavien PA, Rudiger HA, Selzner M (2000) Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis. Int J Oncol 17:869–879Google ScholarCox CD, Breslin MJ, Mariano BJ, Coleman PJ, Buser CA, Walsh ES, Hamilton K, Huber HE, Kohl NE, Torrent M, Yan Y, Kuo LC, Hartmana GD (2005) Kinesin spindle protein (KSP) inhibitors. Part 1: the discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg Med Chem Lett 15:2041–2045. doi: 10.1016/j.bmcl.2005.02.055 PubMedCrossRefGoogle ScholarDas U, Sakagami H, Chu Q, Wang Q, Kawase M, Selvakumar P, Sharma RK, Dimmock JR (2010) 3,5-Bis(benzylidene)-1-[4-2-(morpholin-4-yl)ethoxyphenyl carbonyl]-4-piperidone hydrochloride: a lead tumor-specific cytotoxin which induces apoptosis and autophagy. Bioorg Med Chem Lett 20:912–917. doi: 10.1016/j.bmcl.2009.12.076 PubMedCrossRefGoogle ScholarDemeunynck M, Charmantray F, Martelli A (2001) Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Des 7:1703–1724PubMedCrossRefGoogle ScholarDenny WA (2002) Acridine derivatives as chemotherapeutic agents. Curr Med Chem 9:1655–1665PubMedGoogle ScholarDing XL, Zhang HY, Qi L, Zhao BX, Lian S, Lv HS, Miao JY (2009) Synthesis of novel pyrazole carboxamide derivatives and discovery of modulators for apoptosis or autophagy in A549 lung cancer cells. Bioorg Med Chem Lett 19:5325–5328. doi: 10.1016/j.bmcl.2009.07.131 PubMedCrossRefGoogle ScholarDragan YP, Bidlack WR, Cohen SM, Goldsworthy TL, Hard GC, Howard PC, Riley RT, Voss KA (2001) Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B (1) as an example. Toxicol Sci 61:6–17PubMedCrossRefGoogle ScholarDu C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedCrossRefGoogle ScholarFan C, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14:3218–3222. doi: 10.1016/j.bmc.2005.12.035 PubMedCrossRefGoogle ScholarFederica B, Gabriele F, Laura Dal B, Nives C, Chiara G, Franco Z (2010) Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: identification of novel proapoptotic agents. Bioorg Med Chem 18:3543–3550. doi: 10.1016/j.bmc.2010.03.069 CrossRefGoogle ScholarGao C, Jiang Y, Tan C, Zu X, Liu H, Cao D (2008) Synthesis and potent antileukemic activities of 10-benzyl-9(10H)-acridinones. Bioorg Med Chem 16:8670–8675. doi: 10.1016/j.bmc.2008.07.086 PubMedCrossRefGoogle ScholarGarrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433PubMedCrossRefGoogle ScholarGowda NRT, Kavitha CV, Kishore KC, Joy O, Rangappa KS, Raghavan SC (2009) Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1Hbenzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg Med Chem Lett 19:4594–4600. doi: 10.1016/j.bmcl.2009.06.103 PubMedCrossRefGoogle ScholarGroninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA, De Bont ES (2002) Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol 21:1339–1345PubMedGoogle ScholarGuy L, Jérôme Q, Didier B, Sylviane T, Thierry C (2009) Semisynthesis and antiproliferative evaluation of a series of 30-aminoflavones. Bioorg Med Chem Lett 19:3502–3506. doi: 10.1016/j.bmcl.2009.05.008 CrossRefGoogle ScholarHajela K, Ravi S, Chakravarti B, Uma SS, Mohd IA, Shreekant D, Shailendra KDD, Hemant KB, Rituraj K, Geetika K, Vishal C, Anila D (2009) Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents. Bioorg Med Chem 17:3847–3856. doi: 10.1016/j.bmc.2009.04.032 PubMedCrossRefGoogle ScholarHelmut S, Karem S, Nipawan P, Eva W, Wolfgang H, Peter S, Babette A, Gilbert M, Eckhard G (2007) Synthesis and biological evaluation of novel cytotoxic azanaphthoquinone annelated pyrrolo oximes. Bioorg Med Chem Lett 17:6091–6095. doi: 10.1016/j.bmcl.2007.09.054 CrossRefGoogle ScholarHill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J 23:2134–2145PubMedCrossRefGoogle ScholarHua WP, Chen YK, Liao CC, Yu HS, Tsai YM, Huang SM, Tsai FY, Shen HC, Chang LS, Wang JJ (2010) Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents. Bioorg Med Chem 18:6197–6207. doi: 10.1016/j.bmc.2010.04.082 CrossRefGoogle ScholarHuang W-C, Yang L, Lei H, Mi C-G, Liu H, Tian Z, Zhao Y-L, Lai X-Y, Li Z-C, Hang S (2011) Synthesis, antiproliferative activities and in vitro biological evaluation of novel benzofuransulfonamide derivatives. Bioorg Med Chem Lett 21:5389–5392. doi: 10.1016/j.bmcl.2011.07.007 PubMedCrossRefGoogle ScholarHussein AM, Osama AM (2010) Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem 18:2639–2644. doi: 10.1016/j.bmc.2010.02.028 PubMedCrossRefGoogle ScholarIgor VM, Madhuri M, Nikolai ME, Eerik ME, Elena R, Marcia AO, Jennifer DB, Nikolai MP, Snezna R, Alexander K (2007) Antiproliferative and apoptosis inducing properties of pyrano[3,2-c]pyridones accessible by a one-step multicomponent synthesis. Bioorg Med Chem Lett 17:3872–3876. doi: 10.1016/j.bmcl.2007.05.004 CrossRefGoogle ScholarIkeda R, Kurosawa M, Okabayashi T, Takei A, Yoshiwara M, Kumakura T, Sakai N, Funatsu O, Morita A, Ikekita M, Nakaike Y, Konakahara T (2011) 3-(3-Phenoxybenzyl)amino-b-carboline: a novel antitumor drug targeting α-tubulin. Bioorg Med Chem Lett 21:4784–4787. doi: 10.1016/j.bmcl.2011.06.061 PubMedCrossRefGoogle ScholarIppolito A, Amelia M, Silvia S, Roberta L, Mosca M, Consuelo A, Giorgio S (2004) Synthesis and biological evaluation of indazolo[4,3-bc]-[1,5]naphthyridines(10-aza-pyrazolo[3,4,5-kl]acridines): a new class of antitumor agents. Bioorg Med Chem 12:5941–5947. doi: 10.1016/j.bmc.2004.08.020 CrossRefGoogle ScholarJian L, Jiangping L, Zhen L, Yan L, Zhou M, Zhengxi Z, Shu Z, Renxiao W (2011) Synthesis and anti-tumor activities of N′-benzylidene-2-(4-oxothieno[2,3-d] pyrimidin-3(4H)-yl)acetohydrazone derivatives. Bioorg Med Chem Lett 21:6662–6666. doi: 10.1016/j.bmcl.2011.09.061 CrossRefGoogle ScholarJiang C, Yang L, Wu WT, Guo QL, You QD (2011) De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem 19:5612–5627. doi: 10.1016/j.bmc.2011.07.029 PubMedCrossRefGoogle ScholarJunying M, Qiuxia H, Xingshang Z, Mei S, Baoxiang Z, Jing Z, Shangli Z (2007) Novel morpholin-3-one derivatives induced apoptosis and elevated the level of P53 and Fas in A549 lung cancer cells. Bioorg Med Chem 15:3889–3895. doi: 10.1016/j.bmc.2007.03.008 CrossRefGoogle ScholarKacinski BM, Flick M (2001) Apoptosis and cutaneous T cell lymphoma. Ann N Y Acad Sci 941:194–199PubMedCrossRefGoogle ScholarKamal A, Bharathi EV, Ramaiah MJ, Dastagiri D, Reddy JS, Viswanath A, Sultana F, Pushpavalli SNCVL, Bhadra MP, Srivastava HK, Sastry GN, Juvekar A, Sen S, Zingde S (2010a) Quinazolinone linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD) conjugates: design, synthesis and biological evaluation as potential anticancer agents. Bioorg Med Chem 18:526–542. doi: 10.1016/j.bmc.2009.12.015 PubMedCrossRefGoogle ScholarKamal A, Dastagiri D, Janaki MR, Reddy JS, Bharathi EJ, Srinivas C, Pushpavalli SNCVL, Pal D, Bhadra MP (2010b) Synthesis of imidazothiazole – chalcone derivatives as anticancer and apoptosis inducing agents. Chem Med Chem 5:1937–1947. doi: 10.1002/cmdc.201000346 PubMedGoogle ScholarKamal A, Dastagiri D, Ramaiah MJ, Bharathi EV, Reddy JS, Balakishan G, Sarma P, Pushpavalli SNCVL, Bhadra MP, Juvekar A, Sen S, Zingde S (2010c) Synthesis, anticancer activity and mitochondrial mediated apoptosis inducing ability of 2,5-diaryloxadiazole–pyrrolobenzodiazepine conjugates. Bioorg Med Chem 18:6666–6677. doi: 10.1016/j.bmc.2010.07.067 PubMedCrossRefGoogle ScholarKamal A, Reddy JS, Ramaiah MJ, Bharathi EJ, Dastagiri D, Reddy MK, Pushpavalli SNCVL, Bhadra MP (2010d) Synthesis and biological evaluation of anilino substituted pyrimidine linked pyrrolobenzodiazepines as potential anticancer agents. Bioorg Med Chem Lett 20:5232–5236. doi: 10.1016/j.bmcl.2010.06.147 PubMedCrossRefGoogle ScholarKamal A, Reddy MK, Ramaiah MJ, Srikanth YVV, Rajender RVS, Kumar GB, Pushpavalli SNCVL, Bag I, Juvekar A, Sen S, Zingde SM, Bhadra MP (2011a) Synthesis of aryl-substituted naphthalene-linked pyrrolobenzodiazepine conjugates as potential anticancer agents with apoptosis-inducing ability. ChemMedChem 6:1665–1679. doi: 10.1002/cmdc.201100207 PubMedCrossRefGoogle ScholarKamal A, Srikanth YVV, Khan MNA, Ashraf MD, Reddy MK, Sultana F, Kaur T, Chashoo G, Suri N, Sehar I, Wani ZA, Saxena A, Sharma PR, Bhushan S, Mondhe DM, Saxena AK (2011b) 2-Anilinonicotinyl linked 2-aminobenzothiazoles and [1,2,4]triazolo[1,5-b] [1,2,4] benzothiadiazine conjugates as potential mitochondrial apoptotic inducers. Bioorg Med Chem 19:7136–7150. doi: 10.1016/j.bmc.2011.09.060 PubMedCrossRefGoogle ScholarKamal A, Suresh P, Mallareddy A, Kumar BA, Reddy PV, Raju P, Tamboli JR, Thokhir BS, Nishant J, Shasi VK (2011c) Synthesis of a new 4-aza-2,3-didehydropodophyllotoxin analogues as potent cytotoxic and antimitotic agents. Bioorg Med Chem 19:2349–2358. doi: 10.1016/j.bmc.2011.02.020 PubMedCrossRefGoogle ScholarKamal A, Ramakrishna G, Nayak VL, Raju P, Rao AVS, Viswanath A, Vishnuvardhan MVPS, Ramakrishna S, Srinivas G (2012a) Design and synthesis of benzo[c, d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorg Med Chem 20:789–800. doi: 10.1016/j.bmc.2011.12.003 PubMedCrossRefGoogle ScholarKamal A, Srikanth YVV, Ramaiah MJ, Naseer MAK, Reddy MK, Ashraf MD, Lavanya A, Pushpavalli SN, Bhadra MP (2012b) Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg Med Chem Lett 22:571–578. doi: 10.1016/j.bmcl.2011.10.080 PubMedCrossRefGoogle ScholarKara LV, Julie ML, Marie R, Stephen GP, John BB (2007) An investigation into the cytotoxicity and mode of action of some novel N-alkyl-substituted isatins. J Med Chem 50:5109–5117. doi: 10.1021/jm0704189 CrossRefGoogle ScholarKemnitzer W, Sirisoma N, May C, Tseng B, Drewe J, Cai SX (2009) Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Bioorg Med Chem Lett 19:3536–3540. doi: 10.1016/j.bmcl.2009.04.145 PubMedCrossRefGoogle ScholarKemnitzer W, Sirisoma N, Jiang S, Kasibhatla S, Grundy CC, Tseng B, Drewe J, Cai SX (2010) Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 9-oxo-9H-fluorene ring. Bioorg Med Chem Lett 20:1288–1292. doi: 10.1016/j.bmcl.2009.11.025 PubMedCrossRefGoogle ScholarKerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCrossRefGoogle ScholarKingston DG, Newman DJ (2007) Taxoids: cancer- fighting compounds from nature. Curr Opin Drug Discov Devel 10:130–144PubMedGoogle ScholarKok SHL, Gambari R, Chui CH, Yuen MCW, Lin E, Wong RSM, Lau FY, Cheng GYM, Lam WS, Chan SH, Lam KH, Cheng CH, Lai PBS, Yu MWY, Cheung F, Tanga JCO, Chana ASC (2008) Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg Med Chem 16:3626–3631. doi: 10.1016/j.bmc.2008.02.005 PubMedCrossRefGoogle ScholarKong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 481:231–241CrossRefGoogle ScholarKrishnegowda G, Gowda ASP, Tagaram HRS, Carroll KFS, Irby RB, Sharma AK, Amin S (2011) Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg Med Chem 19:6006–6014. doi: 10.1016/j.bmc.2011.08.044 PubMedCrossRefGoogle ScholarKwang-Hoe Chung K-H, Hong S-Y, Kyu-Won Kwak K-W, Chung-Kyu Ryu C-K, Soo-Jung Kang S-J (2008) Antiproliferative effects of 6-anilino-5-chloro-1Hbenzo[d]imidazole-4,7-dione in vascular smooth muscle cells. Bioorg Med Chem 16:644–649. doi: 10.1016/j.bmc.2007.10.069 PubMedCrossRefGoogle ScholarLee EJ, Lee HJ, Park HJ, Min HY, Suh M, Chung HJ, Lee SK (2004) Induction of G2/M cell cycle arrest and apoptosis by a benz[f]indole-4,9-dione analog in cultured human lung (A549) cancer cells. Bioorg Med Chem Lett 14:5175–5178. doi: 10.1016/j.bmcl.2004.07.062 PubMedCrossRefGoogle ScholarLee JW, Moon MJ, Min HY, Chung HJ, Park EJ, Park HJ, Hong JY, Kimb YC, Lee SK (2005) Induction of apoptosis by a novel indirubin-5-nitro-3′-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorg Med Chem Lett 15:3948–3952. doi: 10.1016/j.bmcl.2005.05.105 PubMedCrossRefGoogle ScholarLee YB, Gong YD, Yoon H, Ahn CH, Jeon MK, Kong JY (2010) Synthesis and anticancer activity of new 1-[(5 or 6-substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives. Bioorg Med Chem 18:7966–7974. doi: 10.1016/j.bmc.2010.09.028 PubMedCrossRefGoogle ScholarLi HQ, Li DD, Lu X, Xu YY, Zhu HL (2012) Design and synthesis of 4,6-substituted-(diaphenylamino)quinazolines as potent EGFR inhibitors with antitumor activity. Bioorg Med Chem 20:317–323. doi: 10.1016/j.bmc.2011.10.085 PubMedCrossRefGoogle ScholarLisa MH, Dan CC, Wayne EC, Paul JD, Arlene D, Boyd LH, Vasilios M, Gregory T, Ann A, Rebecca C, Bhupesh K, Weixin X, Lidia M, Moy F, Hum W-T, Andrew W, Albert JR (2009) 3,4-Dihydropyrimido(1,2-a)indol-10(2H)-ones as potent non-peptidic inhibitors of caspase-3. Bioorg Med Chem 17:7755–7768. doi: 10.1016/j.bmc.2009.09.036 CrossRefGoogle ScholarLocksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501PubMedCrossRefGoogle ScholarLos M, Wesselborg S, Schulze-Osthoff K (1999) The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10:629–639PubMedCrossRefGoogle ScholarLowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495PubMedCrossRefGoogle ScholarLucía C, Elena C, Eva B, Amaia R, Xabi S, Hector C, Ma VD, Mikel E, Beatriz M, Carmen S, Juan AP, María F, Jesús G-F (2007) Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem 15:1659–1669. doi: 10.1016/j.bmc.2006.12.010 CrossRefGoogle ScholarMarini AM, Dalla LV, Marini AM, Salerno S, Motta CL, Condello M, Arancia G, Agostinelli E, Toninello A (2009) Synthesis and biological activity of 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole derivatives, novel pro-apoptotic mitochondrial targeted agents. Bioorg Med Chem 17:326–336. doi: 10.1016/j.bmc.2008.10.067 PubMedCrossRefGoogle ScholarMartinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–370PubMedCrossRefGoogle ScholarMasami I, Hiroyuki K, Takashi O, Takashi K, Thaworn K, Toshiyuki S (2009) Death receptor 5 targeting activity-guided isolation of isoflavones from Millettia brandisiana and Ardisia colorata and evaluation of ability to induce TRAIL-mediated apoptosis. Bioorg Med Chem 17:1181–1186. doi: 10.1016/j.bmc.2008.12.033 CrossRefGoogle ScholarNan F-J, Chen Y-H, Zhang Y-H, Zhang H-J, Liu D-Z, Min G, Li J-Y, Fang W, Zhu X-Z, Jia L (2006) Design, synthesis, and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent caspase-3 inhibitors. J Med Chem 49:1613–1623. doi: 10.1021/jm050896o PubMedCrossRefGoogle ScholarNelson EM, Tewey KM, Liu LF (1984) Mechanisms of antitumor drug action: poisoning of mammalian DNA-topoisomerase II on DNA by 4′-(9-acridinylamino)-methone-sulfon-m-anisidide. Proc Natl Acad Sci 81:1361–1365PubMedCrossRefGoogle ScholarNitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350. doi: 10.1038/nrc2607 PubMedCrossRefGoogle ScholarPeter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551PubMedCrossRefGoogle ScholarPlassmann NS, Sarli V, Gartner M, Utz M, Seiler J, Huemmer S, Mayer TU, Surrey T, Giannisa A (2005) Synthesis and biological evaluation of new tetrahydro-β-carbolines as inhibitors of the mitotic kinesin Eg5. Bioorg Med Chem 13:6094–6111. doi: 10.1016/j.bmc.2005.06.027 CrossRefGoogle ScholarPojarova M, Kaufmann D, Gastpar R, Nishino T, Reszka P, Bednarski PJ, Angerer EV (2007) [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G2/M phase and apoptosis. Bioorg Med Chem 15:7368–7379. doi: 10.1016/j.bmc.2007.07.046 PubMedCrossRefGoogle ScholarPorter J, Payne A, Candole BD, Ford D, Hutchinson B, Trevitt G, Turner J, Edwards C, Watkins C, Whitcombe I, Davis J, Stubberfield C (2009) Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg Med Chem Lett 19:230–233. doi: 10.1016/j.bmcl.2008.10.113 PubMedCrossRefGoogle ScholarRich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407:777–783PubMedCrossRefGoogle ScholarRobert HM, Wenhua C, Jun Z, Chenbo Z, Justin R, Zhude T, Yunxiang C, David ER, Michael JW (2005) N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J Med Chem 48:7637–7647. doi: 10.1021/jm0506625 CrossRefGoogle ScholarRomano S, Giuseppe LR, Ruoli B, Willeke R, Antonio C, Francesco P, Valerio G, Alessio B, Antonio L, Ilaria G, Amalia P, Bruno M, Alessandra S, Maria LI, Marisa M, Angela S, Andrea B, Cristiano F, Giulio D, Mario V, Ciro M, Ernest H, Patrizia L, Ettore N (2011) Design and synthesis of 2-heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability. J Med Chem 54:8394–8406. doi: org/10.1021/jm2012886 CrossRefGoogle ScholarRomeo R, Pier GB, Maria DC, Olga C-L, Delia P, Mojgan AT, Francesca F, Heilmann J, Jaime B, Francisco E (2007) Hybrid molecules containing benzo[4,5]imidazo-[1,2-d][1,2,4]thiadiazole and a-bromoacryloyl moieties as potent apoptosis inducers on human myeloid leukaemia cells. Bioorg Med Chem Lett 17:2844–2848. doi: 10.1016/j.bmcl.2007.02.048 CrossRefGoogle ScholarRoncuzzi L, Marti G, Baiocchi D, Del Coco R, Cocchi S, Gasperi-Campani A (2006) Effect of Vinorelbine on cell growth and apoptosis induction in human osteosarcoma in vitro. Oncol Rep 15:73–77PubMedGoogle ScholarRubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A, Rosenwald A, Climent J, Martinez JI, Schilhabel M, Karran EL, Gesk S, Esteller M, deLeeuw R, Staudt LM, Fernandez-Luna JL, Pinkel D, Dyer MJ, Martinez-Climent JA (2005) Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 106:3214–3222PubMedCrossRefGoogle ScholarSaelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874PubMedCrossRefGoogle ScholarSashidhara KV, Rosaiah JN, Manoj K, Rishi KG, Lakshma VN, Kamini S, Hemant KB, Rituraj K (2010) Neo-tanshinlactone inspired synthesis, in vitro evaluation of novel substituted benzocoumarin derivatives as potent anti-breast cancer agents. Bioorg Med Chem Lett 20:7127–7131. doi: 10.1016/j.bmcl.2010.09.040 PubMedCrossRefGoogle ScholarSavitz SI, Daniel BA, Rosenbaum MD (1998) Apoptosis in neurological disease. Neurosurgery 42:555–572. doi: 10.1097/00006123-199803000-00026 PubMedCrossRefGoogle ScholarSchulte-Hermann R, Bursch W, Low-Baselli A, Wagner A, Grasl-Kraupp B (1997) Apoptosis in the liver and its role in hepatocarcinogenesis. Cell Biol Toxicol 13:339–348. doi: 10.1023/A:1007495626864 PubMedCrossRefGoogle ScholarSchulte-Hermann R, Hufnagl K, Low-Baselli A, Rossmanith W, Wagner A, Ruttkay-Neky B, Bursch W, Mullauer L, Parzefall W, Grasl-Kraupp B (1998) Apoptosis and hepatocarcinogenesis. Digestion 59:64–65. doi: 10.1159/000051426 PubMedCrossRefGoogle ScholarSergey NF, Alexandra SK, Valeria VS, Larisa KS, Oleg SR, Nadezda NB, Maxim EZ, Joo-In P, Jong YK, Valentin AS (2010) The anticancer activity of 3- and 10-bromofascaplysins is mediated by caspase-8, -9, -3-dependent apoptosis. Bioorg Med Chem 18:3834–3840. doi: 10.1016/j.bmc.2010.04.043 CrossRefGoogle ScholarShaomeng W, Guozhi T, Ke D, Zaneta N-C, Yang C-Y, Su Q, Sanjeev S, Renxiao W, Jie G, Wei G, Jennifer M, Jeanne S, Krzysztof K, Sheng J, Peter PR (2007) Structure-based design of flavonoid compounds as a new class of small-molecule inhibitors of the anti-apoptotic Bcl-2 proteins. J Med Chem 50:3163–3166. doi: 10.1021/jm070383c CrossRefGoogle ScholarShaw AY, Liau HH, Lu PJ, Yang CN, Lee CH, Chen JY, Xu Z, Flynn G (2010) 3,5-Diaryl-1H-pyrazole as a molecular scaffold for the synthesis of apoptosis-inducing agents. Bioorg Med Chem 18:3270–3278. doi: 10.1016/j.bmc.2010.03.016 PubMedCrossRefGoogle ScholarShiming L, Min-Hsiung P, Ching-Shu L, Chih-Yu L, Slavik D, Chi-Tang H (2007) Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines. Bioorg Med Chem 15:3381–3389. doi: 10.1016/j.bmc.2007.03.021 CrossRefGoogle ScholarSilvia S, Fabio C, Antonella N, Annalisa P, Giada AL, Giovanni M, Olga B, Angelo R, Francesco B, Chiara B, Paola F, Giulia M, Luisa M, Michele M, Cristina T, Fabrizio M, Maurizio B (2006) Pyrazolo[3,4-d]pyrimidines as potent antiproliferative and proapoptotic agents toward A431 and 8701-BC cells in culture via inhibition of c-Src phosphorylation. J Med Chem 49:1549–1561. doi: 10.1021/jm050603r CrossRefGoogle ScholarSingh RK, Lange TS, Kim K, Zou Y, Lieb C, Sholler DL, Brard L (2007) Effect of indole ethyl isothiocyanates on proliferation, apoptosis, and MAPK signaling in neuroblastoma cell lines. Bioorg Med Chem Lett 17:5846–5852. doi: 10.1016/j.bmcl.2007.08.032 PubMedCrossRefGoogle ScholarSirisoma N, Kasibhatla S, Nguyen B, Pervin A, Wang Y, Claassen G, Tseng B, Drewe J, Cai SX (2006) Discovery of substituted 4-anilino-2-(2-pyridyl)pyrimidines as a new series of apoptosis inducers using a cell- and caspase-based High throughput screening assay. Part 1: structure–activity relationships of the 4-anilino group. Bioorg Med Chem 14:7761–7773. doi: 10.1016/j.bmc.2006.08.002 PubMedCrossRefGoogle ScholarSirisoma N, Pervin A, Drewe J, Tseng B, Cai SX (2009a) Discovery of substituted N′-(2-oxoindolin-3-ylidene)benzohydrazides as new apoptosis inducers using a cell- and caspase-based HTS assay. Bioorg Med Chem Lett 19:2710–2713. doi: 10.1016/j.bmcl.2009.03.121 PubMedCrossRefGoogle ScholarSirisoma N, Pervin A, Nguyen B, Grundy CC, Kasibhatla S, Tseng B, Drewe J, Cai SX (2009b) Discovery of substituted 4-anilino-2-arylpyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 2. Structure–activity relationships of the 2-aryl group. Bioorg Med Chem Lett 19:2305–2309. doi: 10.1016/j.bmcl.2009.02.074 PubMedCrossRefGoogle ScholarSteller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449. doi: 10.1126/science.7878463 PubMedCrossRefGoogle ScholarStephen WC, Kyler EE, Casey H, Shweta T, Yvonne G, Byron B, Chulsung B (2006) A fluorine containing bipyridine cisplatin analog is more effective than cisplatin at inducing apoptosis in cancer cell lines. Bioorg Med Chem 14:8692–8700. doi: 10.1016/j.bmc.2006.08.016 CrossRefGoogle ScholarSui XC, William K, Shailaja K, Songchun J, Hong Z, Jianghong Z, Shaojuan J, Lifen X, Candace C-G, Réal D, Nancy B, Louis V, Sylvie C, Jennifer D, Giorgio A, Denis L, Serge L, Henriette G, Ben T, John D (2005) Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg Med Chem Lett 15:4745–4751. doi: 10.1016/j.bmcl.2005.07.066 CrossRefGoogle ScholarSui XC, John D, Shailaja K, Ben T, Emma S, David S, Robert MY, Joane L, Martin S, Jeffrey RS (2007) Discovery of 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-phenyl-(E)-2,3,6,7-tetrahydro-1,4-thiazepines as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Bioorg Med Chem Lett 17:4987–4990. doi: 10.1016/j.bmcl.2007.05.098 CrossRefGoogle ScholarSui XC, Jared K, Songchun J, Ben T, Shailaja K, John D (2008a) Synthesis of caged 2,3,3a,7a-tetrahydro-3,6-methanobenzofuran-7(6H)-ones: Evaluating the minimum structure for apoptosis induction by gambogic acid. Bioorg Med Chem 16:4233–4241. doi: 10.1016/j.bmc.2008.02.084 CrossRefGoogle ScholarSui XC, William K, Jared K, Songchun J, Zhang H-Z, Nilantha S, Shailaja K, Candace C-G, Ben T, John D (2008b) Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. Part 1: structure–activity relationships of the 1- and 3-positions. Bioorg Med Chem Lett 18:6259–6264. doi: 10.1016/j.bmcl.2008.09.110 CrossRefGoogle ScholarSui XC, Zhang H-Z, Gisela C, Candace C-G, Ben T, John D (2008c) Discovery and structure–activity relationship of N-phenyl-1H-pyrazolo[3,4-b]quinolin-4-amines as a new series of potent apoptosis inducers. Bioorg Med Chem 16:222–231. doi: 10.1016/j.bmc.2007.09.046 CrossRefGoogle ScholarSui XC, William K, Jared K, Songchun J, Nilantha S, Shailaja K, Candace C-G, Ben T, John D (2009) Discovery of 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2: structure–activity relationships of the 4-, 5-, 6-, 7- and 8-positions. Bioorg Med Chem Lett 19:3481–3484. doi: 10.1016/j.bmcl.2009.05.012 CrossRefGoogle ScholarSuliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20:2122–2133PubMedCrossRefGoogle ScholarSun D, Wang W, Mao J, Mei W, Liu J (2012) Imidazo [4,5f][1,10] phenanthroline derivatives as inhibitor of c-myc gene expression in A549 cells via NF-jB pathway. Bioorg Med Chem Lett 22:102–105. doi: 10.1016/j.bmcl.2011.11.063 PubMedCrossRefGoogle ScholarSungwoo H, Seunghee H, Soyoung L, Bomi K, Hyunseung L, Soon-Sun Hong S-S (2010) Discovery of new azaindole-based PI3Ka inhibitors: apoptotic and antiangiogenic effect on cancer cells. Bioorg Med Chem Lett 20:7212–7215. doi: 10.1016/j.bmcl.2010.10.108 CrossRefGoogle ScholarTseng CH, Chen YL, Lu PJ, Yang CN, Tzeng CC (2008) Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg Med Chem 16:3153–3162. doi: 10.1016/j.bmc.2007.12.028 PubMedCrossRefGoogle ScholarTseng CH, Chen YL, Chung KY, Cheng CM, Wang CH, Tzeng CC (2009) Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinolone derivatives. Bioorg Med Chem 17:7465–7476. doi: 10.1016/j.bmc.2009.09.021 PubMedCrossRefGoogle ScholarTseng CH, Tzeng CC, Chung KY, Kao CL, Hsu CY, Cheng CM, Huang KS, Chen YL (2011) Synthesis and antiproliferative evaluation of 6-aryl-11-iminoindeno[1,2-c]quinoline derivatives. Bioorg Med Chem 19:7653–7663. doi: 10.1016/j.bmc.2011.10.014 PubMedCrossRefGoogle ScholarTzeng C-C, Lu C-M, Yeh-Long Chen Y-L, Hui-Ling Chen H-L, Chen C-A, Lu P-J, Yang C-N (2010) Synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. Bioorg Med Chem 18:1948–1957. doi: 10.1016/j.bmc.2010.01.033 PubMedCrossRefGoogle ScholarVaupel P, Hockel M (2001) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Hepatology 33:1555–1557CrossRefGoogle ScholarVincent W-FT, David S, Emma JS, Joane L, Keith P, Ben C, Julia L, John E, Seema K, Peter S, Cindy B, Jennifer Z, Chris R, Bill M, Doris G, Alberto E, Jason O, Darren W, Yong N, Paul S, Robert Y, Catherine M, Anthony N, Cai SX, John D, Ling Q, John H, Ben T, Shailaja K, Jeffrey RS (2006) Discovery and structure–activity relationship of 2-phenyl-oxazole-4-carboxamide derivatives as potent apoptosis inducers. Bioorg Med Chem Lett 16:4554–4558. doi: 10.1016/j.bmcl.2006.06.018 CrossRefGoogle ScholarWang T-C, Chen I-L, Chen J-Y, Shieh P-C, Chen J-J, Lee C-H, Juang S-H (2008) Synthesis and antiproliferative evaluation of amide-containing flavone and isoflavone derivatives. Bioorg Med Chem 16:7639–7645. doi: 10.1016/j.bmc.2008.07.013 PubMedCrossRefGoogle ScholarWang Z, Shi XH, Wang J, Zhou T, Xu YZ, Huang TT, Li YF, Zhao YL, Yang L, Yang SY, Yu LT, Wei YQ (2011) Synthesis, structure–activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg Med Chem Lett 21:1097–1101. doi: 10.1016/j.bmcl.2010.12.124 PubMedCrossRefGoogle ScholarWon SJ, Chung KS, Ki YS, Choi JH, Cho WJ, Lee KT (2010) CWJ-081, a novel 3-arylisoquinoline derivative, induces apoptosis in human leukemia HL-60 cells partially involves reactive oxygen species through c-Jun NH2-terminal kinase pathway. Bioorg Med Chem Lett 20:6447–6451. doi: 10.1016/j.bmcl.2010.09.078 PubMedCrossRefGoogle ScholarWua X, Li M, Qu Y, Tang W, Zheng Y, Lian J, Ji M, Xu L (2010) Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg Med Chem 18:3812–3822. doi: 10.1016/j.bmc.2010.04.046 CrossRefGoogle ScholarYang G-F, Huang W, Liu M-Z, Li Y, Tan Y (2007) Design, syntheses, and antitumor activity of novel chromone and aurone derivatives. Bioorg Med Chem 15:5191–5197. doi: 10.1016/j.bmc.2007.05.022 PubMedCrossRefGoogle ScholarYang SH, Khadka DB, Cho SH, Ju HK, Lee KY, Han HJ, Lee KT, ChoW J (2011) Virtual screening and synthesis of quinazolines as novel JAK2 inhibitors. Bioorg Med Chem 19:968–977. doi: 10.1016/j.bmc.2010.11.057 PubMedCrossRefGoogle ScholarYongzhou H, Tao L, Xiaowu D, Na X, Rui W, Qiaojun H, Bo Y (2009) Synthesis and biological evaluation of 3,4-diaryl-5-aminoisoxazole derivatives. Bioorg Med Chem 17:6279–6285. doi: 10.1016/j.bmc.2009.07.040 CrossRefGoogle ScholarYuyang J, Huachen L, Aijun D, Chunmei G, Chunyan T, Zhenhua X, Xuyu Z, Long Q (2010) New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells. Bioorg Med Chem 18:6322–6328. doi: 10.1016/j.bmc.2010.07.019 CrossRefGoogle ScholarZerban H, Radig S, Kopp-Schneider A, Bannasch P (1994) Cell proliferation and cell death (apoptosis) in hepatic preneoplasia and neoplasia are closely related to phenotypic cellular diversity and instability. Carcinogenesis 15:2467–2473PubMedCrossRefGoogle ScholarZhang HZ, Drewe J, Tseng B, Kasibhatla S, Cai SX (2004) Discovery and SAR of indole-2-carboxylic acid benzylidenehydrazides as a new series of potent apoptosis inducers using a cellbased HTS assay. Bioorg Med Chem 12:3649–3655. doi: 10.1016/j.bmc.2004.04.017 PubMedCrossRefGoogle ScholarZhao B-X, Hong-Shui Lv H-S, Xiang-Qian Kong X-Q, Qian-Qian Ming Q-Q, Xing J, Jun-Ying Miao J-Y (2012) Synthesis of 5-benzyl-2-phenylpyrazolo[1,5-a]pyrazin-4,6(5H,7H)-dione derivatives and discovery of an apoptosis inducer for H322 lung cancer cells. Bioorg Med Chem Lett 22:844–849. doi: 10.1016/j.bmcl.2011.12.049 PubMedCrossRefGoogle ScholarZheng LW, Wu LL, Zhao BX, Dong WL, Miao JY (2009) Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazine derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorg Med Chem 17:1957–1962. doi: 10.1016/j.bmc.2009.01.037 PubMedCrossRefGoogle ScholarZhiyu L, Wei F, Jubo W, Liqin Y, Li Z, Na L, Qidong Y, Qinglong G (2012) Synthesis and biological evaluation of 7-O-modified oroxylin A derivatives. Bioorg Med Chem Lett 22:1118–1121. doi: 10.1016/j.bmcl.2011.11.117 CrossRefGoogle ScholarZhou B, Yang J, Liu G-Y, Dai F, Cao X-Y, Kang Y-f HuL-M, Tang J-J, Li X-Z, Li Y, Jin X-L (2011) Synthesis and biological evaluation of hydroxylated 3-phenylcoumarins as antioxidants and antiproliferative agents. Bioorg Med Chem Lett 21:6420–6425. doi: 10.1016/j.bmcl.2011.08.090 PubMedCrossRefGoogle ScholarZimmermann KC, Green DRJ (2001) How cells die: apoptosis pathways. J Allergy Clin Immunol 108:S99–S103PubMedCrossRefGoogle ScholarZornig M, Hueber A, Baum W, Evan G (2001) Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551:F1–F37PubMedGoogle ScholarCopyright information© Springer Science+Business Media Dordrecht 2012Authors and AffiliationsAhmed Kamal1Email authorAdla Mallareddy1Paidakula Suresh11.Division of Organic Chemistry, Natural Product ChemistryIndian Institute of Chemical TechnologyHyderabadIndia About this chapter Cite this chapter as: Kamal A., Mallareddy A., Suresh P. (2012) Heterocyclics as Inducers of Apoptosis. In: Chen G., Lai P. (eds) Novel Apoptotic Regulators in Carcinogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4917-7_3 First Online 13 July 2012 DOI https://doi.org/10.1007/978-94-007-4917-7_3 Publisher Name Springer, Dordrecht Print ISBN 978-94-007-4916-0 Online ISBN 978-94-007-4917-7 eBook Packages Biomedical and Life Sciences Biomedical and Life Sciences (R0)

本文链接: http://heterocyclics.immuno-online.com/view-763993.html

发布于 : 2021-03-25 阅读(0)